Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

MN

giải các phương trình sau :

a: 3cot(2x-80)-\(\sqrt{3}\)=0

b:sinx+cosx=1

c:sinx+sin2x=0

d:sin4x+cos4x =1

e:tan3x+\(\sqrt{3}\) =0

f:\(\tan\frac{x}{2}\)+\(\cot\frac{2\pi}{5}\)=0

g:cos23x=cos22x

NL
28 tháng 11 2019 lúc 0:26

a/ Thiếu đề, sau dấu "-" hình như còn gì đó

b/ \(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}=sin\left(\frac{\pi}{4}\right)\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

c/ \(\Rightarrow sin2x=-sinx\Leftrightarrow sin2x=sin\left(-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x=-x+k2\pi\\2x=\pi+x+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{3}\\x=\pi+k2\pi\end{matrix}\right.\)

d/ \(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1\)

\(\Leftrightarrow sinx.cosx=0\Leftrightarrow sin2x=0\)

\(\Rightarrow2x=k\pi\Rightarrow x=\frac{k\pi}{2}\)

e/ f/ Thiếu đề

g/ \(\Leftrightarrow\left[{}\begin{matrix}cos3x=cos2x\\cos3x=-cos2x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cos3x=cos2x\\cos3x=cos\left(\pi-2x\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=2x+k2\pi\\3x=-2x+k2\pi\\3x=\pi-2x+k2\pi\\3x=2x-\pi+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{k2\pi}{5}\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\\x=-\pi+k2\pi\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
JE
Xem chi tiết
KQ
Xem chi tiết
JE
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
YM
Xem chi tiết