Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

NH

tìm GTLN,GTNN của hàm số sau:

a, \(y=\frac{1}{sinx}+\frac{1}{cosx},x\in\left(0,\frac{\pi}{2}\right)\)

b, \(y=\frac{1}{1-cosx}+\frac{1}{1+cosx},x\in\left(0,\frac{\pi}{2}\right)\)

c, \(y=2+tan^2x+cot^2x+\frac{1}{sin^4x+cos^4x},x\in\left(0,\frac{\pi}{2}\right)\)

NL
23 tháng 7 2020 lúc 22:35

a/

\(y=\frac{1}{sinx}+\frac{1}{cosx}\ge\frac{4}{sinx+cosx}=\frac{4}{\sqrt{2}sin\left(x+\frac{\pi}{4}\right)}\ge\frac{4}{\sqrt{2}}=2\sqrt{2}\)

\(y_{min}=2\sqrt{2}\) khi \(\left\{{}\begin{matrix}sinx=cosx\\sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{4}\)

\(y_{max}\) không tồn tại (y dần tới dương vô cùng khi x gần tới 0 hoặc \(\frac{\pi}{2}\))

b/

\(y=\frac{1}{1-cosx}+\frac{1}{1+cosx}=\frac{1+cosx+1-cosx}{1-cos^2x}=\frac{2}{sin^2x}\)

Hàm số ko tồn tại cả min lẫn max ( \(0< y< \infty\))

c/

Do \(tan^2x\) ko tồn tại max (tiến tới vô cực) trên khoảng đã cho nên hàm ko tồn tại max

\(y=2+\frac{sin^4x+cos^4x}{\left(sinx.cosx\right)^2}+\frac{1}{sin^4x+cos^4x}\ge2+2\sqrt{\frac{sin^4x+cos^4x}{\frac{1}{4}sin^22x.\left(sin^4x+cos^4x\right)}}\)

\(y\ge2+\frac{4}{sin2x}\ge2+\frac{4}{1}=6\)

\(y_{min}=6\) khi \(\left\{{}\begin{matrix}sin2x=1\\sin^4x+cos^4x=sinx.cosx\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{4}\)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
PT
Xem chi tiết
NL
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
NL
Xem chi tiết
KQ
Xem chi tiết