Violympic toán 8

H24

Giải các phương trình sau

1) \(x^2-x+7=\left|-5x+1\right|\)

2) x2 + 9 = | -6x - 1 |

3) x2 + 5x + 7 = | 3x + 5 |

4) x2 + 6x + 9 = | 2x + 3 |

NL
5 tháng 4 2019 lúc 23:57

Để ý rằng tất cả các biểu thức 2 vế của 4 bài đều không âm, cho nên ta bình phương 2 vế:

a/

\(\left(x^2-x+7\right)^2=\left(-5x+1\right)^2\)

\(\Leftrightarrow\left(x^2-x+7\right)^2-\left(-5x+1\right)^2=0\)

\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2+4x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+8=0\\x^2+4x+6=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

b/

\(\left(x^2+9\right)^2=\left(-6x+1\right)^2\)

\(\Leftrightarrow\left(x^2+9\right)^2-\left(-6x+1\right)^2=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2+6x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+10=0\left(vn\right)\\x^2+6x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

Bình luận (4)
NL
6 tháng 4 2019 lúc 0:02

c/

\(\left(x^2+5x+7\right)^2-\left(3x+5\right)^2=0\)

\(\Leftrightarrow\left(x^2+2x+2\right)\left(x^2+8x+12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+2=0\left(vn\right)\\x^2+8x+12=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)

d/

\(\left(x^2+6x+9\right)^2-\left(2x+3\right)^2=0\)

\(\Leftrightarrow\left(x^2+4x+6\right)\left(x^2+8x+12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+4x+6=0\left(vn\right)\\x^2+8x+12=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)

Bình luận (1)

Các câu hỏi tương tự
PP
Xem chi tiết
BM
Xem chi tiết
DC
Xem chi tiết
TM
Xem chi tiết
Xem chi tiết
HG
Xem chi tiết
CV
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết