§5. Dấu của tam thức bậc hai

SK

Giải các bất phương trình sau :

a) \(\left\{{}\begin{matrix}x^2\ge4x\\\left(2x-1\right)^2< 9\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}2x-3< \left(x+1\right)\left(x-2\right)\\x^2-x\le6\end{matrix}\right.\)

H24
6 tháng 4 2017 lúc 9:02

a) \(x^2\ge4x\)(1)

Nếu \(\left[{}\begin{matrix}x_1=0\\x_2=4\end{matrix}\right.\) \(\Rightarrow VT=VP\)

Nếu \(x< 0\Rightarrow VT>0;VP< 0\)=> \(VT>VP\)

Nếu 0<x<4 \(\Rightarrow VT< VP\)

nếu x> 4\(\Rightarrow VT>VP\)

Kết luận nghiệm BPT (1): \(\left[{}\begin{matrix}x\le0\\x\ge4\end{matrix}\right.\)

b)

(1) \(\Rightarrow\left[{}\begin{matrix}x< \dfrac{3-\sqrt{5}}{2}\\x>\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\)

(2) \(\Rightarrow-2\le x\le3\)

KL nghiệm

\(\left[{}\begin{matrix}-2\le x< \dfrac{3-\sqrt{5}}{2}\\\dfrac{3+\sqrt{5}}{2}< x\le3\end{matrix}\right.\)

Bình luận (0)
BV
9 tháng 5 2017 lúc 14:37

a)\(Bpt\Leftrightarrow\) \(\left\{{}\begin{matrix}x^2-4x\ge0\left(1\right)\\\left(2x-1\right)^2-9>0\left(2\right)\end{matrix}\right.\)
Giải (1): \(x^2-4x\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le0\end{matrix}\right.\)
Giải (2): \(\left(2x-1\right)^2-9=\left(2x-1\right)^2-3^2=\left(2x-4\right)\left(2x+2\right)\)
\(\left(2x-4\right)\left(2x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vì vậy: \(\left(2x-1\right)^2-9< 0\Leftrightarrow-1< x< 2\).
Kết hợp điều kiện \(\left(1\right)\)\(\left(2\right)\) suy ra: \(-1< x\le0\) thỏa mãn hệ bất phương trình.

Bình luận (0)
BV
9 tháng 5 2017 lúc 14:43

b) \(\left\{{}\begin{matrix}2x-3< \left(x+1\right)\left(x-2\right)\left(1\right)\\x^2-x\le6\left(2\right)\end{matrix}\right.\)
Giải (1): \(2x-3< \left(x+1\right)\left(x-2\right)\)\(\Leftrightarrow2x-3< x^2-x-2\)
\(\Leftrightarrow x^2-3x+1< 0\)\(\Leftrightarrow\dfrac{3-\sqrt{5}}{2}< x< \dfrac{3+\sqrt{5}}{2}\).
Giải (2): \(x^2-x\le6\Leftrightarrow x^2-x-6\le0\)\(\Leftrightarrow2\le x\le3\).
Kết hợp điều kiện (1) và (2) ta có \(2\le x\le3\)là nghiệm của bất phương trình.

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
MM
Xem chi tiết
HH
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
QN
Xem chi tiết
HD
Xem chi tiết
HH
Xem chi tiết
SK
Xem chi tiết