\(x^2-4x-21>0\)
\(\Leftrightarrow\) \(x^2-4x+4>25\)
\(\Leftrightarrow\) \(\left(x-2\right)^2>25\)
\(\Leftrightarrow\) \(\left|x-2\right|>5\)
\(\Leftrightarrow\orbr{\begin{cases}x-2>5\\x-2>-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x>7\\x>-3\end{cases}}}\)
\(x^2-4x-21>0\)
\(x^2-4x+4-25>0\)
\(\left(x-2\right)^2>25\)
Ta có: \(25=5^2=\left(-5\right)^2\)
TH1: \(\left(x-2\right)^2>5^2\)
\(x-2>5\)
\(x>7\)
TH2: \(\left(x-2\right)^2>\left(-5\right)^2\)
\(x-2>-5\)
\(x>-3\)
Kết hợp cả 2 TH ta đc x>-3
=.= hok tốt!!