3 - ( x2 + 2x )2 + 2x2 + 4x \(\ge\) 0 \(\Leftrightarrow\left(x^2+2x\right)^2+2\left(x^2+2x\right)-3\le0.\) Đặt t = x2 + 2x = (x + 1)2 - 1 , \(t\ge-1.\)
BPT trở thành : \(\hept{\begin{cases}t^2+2t-3\le0\\t=(x+1)^2-1\ge-1\end{cases}\Leftrightarrow\hept{\begin{cases}-3\le t\le1\\t\ge-1\end{cases}\Leftrightarrow}-1\le t\le1.}\)
Vậy ta có : \(-1\le x^2+2x\le1\Leftrightarrow x^2+2x-1\le0\Leftrightarrow-1-\sqrt{2}\le x\le-1+\sqrt{2}.\)