\(\frac{x^2+x-6}{x-4}>0\) <=> \(\frac{\left(x^2-4\right)+\left(x-2\right)}{x-4}>0\) <=> \(\frac{\left(x-2\right)\left(x+2\right)+\left(x-2\right)}{x-4}>0\)
<=> \(\frac{\left(x-2\right)\left(x+3\right)}{x-4}>0\). Có các TH:
+/ TH1: \(\hept{\begin{cases}\left(x-2\right)\left(x+3\right)>0\\x-4>0\end{cases}}< =>\orbr{\begin{cases}x< -3\\x>4\end{cases}}\)(1)
+/ TH2: \(\hept{\begin{cases}\left(x-2\right)\left(x+3\right)< 0\\x-4< 0\end{cases}}< =>-3< x< 2\) (2)
Từ (1) và (2) => Nghiệm của PT là: x<2; x khác 3 và x>4
Để \(\frac{x^2+x-6}{x-4}>0\)thì
\(x^2+x-6>0\)và \(x-4>0\)Với điều kiện \(x\ne4\)
Thứ 1
Để \(x^2+x-6>0\)
Thì \(x^2+x>6\)
Mà \(x^2\ge0\)và \(x^2>x\)
Suy ra \(x^2+x\ge0\)
Suy ra \(x>2\)và \(x\ge-2\)
Thứ 2
\(x-4>0\)
Suy ra \(x>4\)
Vậy x phải thỏa mãn điều kiện sau
\(x\ge-2\)
Em mới hc lớp 7 nên có sai sót j thì anh sử nha