DK

giá trị nhỏ nhất  của biểu thức A=3x^2+y^2+2xy+4x là ...

TN
15 tháng 7 2017 lúc 11:42

\(A=3x^2+y^2+2xy+4x\)

\(=\left(2x^2+4x+2\right)+\left(x^2+y^2+2xy\right)-2\)

\(=2\left(x^2+2x+1\right)+\left(x+y\right)^2-2\)

\(=2\left(x+1\right)^2+\left(x+y\right)^2-2\)

Dễ thấy: \(2\left(x+1\right)^2+\left(x+y\right)^2\ge0\)

\(\Rightarrow2\left(x+1\right)^2+\left(x+y\right)^2-2\ge-2\)

Xảy ra khi \(\hept{\begin{cases}x+1=0\\x+y=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-1\\x=-y\end{cases}}\Rightarrow x=-y=-1\)

Bình luận (0)