NQ

Giá trị nhỏ nhất của biểu thức A = 2x2 + y2 - 2xy + 4x + 2y + 5 là ...........

Giup mình với

TM
16 tháng 3 2017 lúc 22:09

\(A=2x^2+y^2-2xy+4x+2y+5\)

\(A=\left(x^2+6x+9\right)+\left(y^2-2xy-2y+x^2-2x+1\right)-5\)

\(A=\left(x^2+6x+9\right)+\left[y^2-2y\left(x-1\right)+\left(x^2-2x+1\right)\right]-5\)

\(A=\left(x^2+6x+9\right)+\left[y^2-2y\left(x-1\right)+\left(x-1\right)^2\right]-5\)

\(A=\left(x+3\right)^2+\left(y-x+1\right)^2-5\ge-5\)

Dấu "=" xảy ra khi x=-3 và y=-4

Bình luận (0)
HG
16 tháng 3 2017 lúc 22:14

\(A=2x^2+y^2-2xy+4x+2y+5\)

=> \(A=y^2-2y\left(x-1\right)+\left(x-1\right)^2-\left(x-1\right)^2+2x^2+4x+5\)

=> \(A=\left(y-x+1\right)^2-x^2+2x-1+2x^2+4x+5\)

=> \(A=\left(y-x+1\right)^2-x^2+6x+4\)

=> \(A=\left(y-x+1\right)^2-\left(x^2-2.x.3+9\right)+13\)

=> \(A=\left(y-x+1\right)^2-\left(x-3\right)^2+13\)

Có \(\left(y-x+1\right)^2\ge0\)

\(\left(x-3\right)^2\ge0\)

=> \(\left(y-x+1\right)^2-\left(x-3\right)^2+13\ge13\)

=> \(A\ge13\)

Vậy Amin = 13 <=> \(\hept{\begin{cases}y-x+1=0\\x-3=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Bình luận (0)
TM
17 tháng 3 2017 lúc 0:13

Bà Giang nhầm rồi kìa \(\left(y-x+1\right)^2-\left(x-3\right)^2+13\) chắc gì đã lớn hơn hoặc bằng 13?

bắt đầu nhầm từ dòng thứ 4

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
TL
Xem chi tiết
DD
Xem chi tiết
HN
Xem chi tiết
VN
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
TB
Xem chi tiết