Đề là
\(C=\frac{3}{\left|x-1\right|+\left(x-1\right)4+1}+\frac{1}{2}.\)
hay là :
\(C=\frac{3}{\left|x-1\right|+\left(x-1\right)4+1+\frac{1}{2}}\)
\(C=\frac{3}{\left|x+1\right|+\left(x-1\right)^4+1}+\frac{1}{2}\)
Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left(x-1\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left|x-1\right|+\left(x-1\right)^4\ge0\)
\(\Rightarrow\left|x-1\right|+\left(x-1\right)^4+1\ge1\)
\(\Rightarrow\frac{3}{\left|x-1\right|+\left(x-1\right)^4+1}\le\frac{3}{1}=3\)
\(\Rightarrow\frac{3}{\left|\text{x}-1\right|+\left(x-1\right)^4+1}+\frac{1}{2}\le3+\frac{1}{2}=\frac{7}{2}\)
hay \(MaxC=\frac{7}{2}\)
Dấu "=" xảy ra khi \(\left|x-1\right|=\left(x-1\right)^4=0\)
\(\Rightarrow x-1=0\)
\(x=1\)
Vậy \(MaxC=\frac{7}{2}\) tại \(x=1\).
để C có giá trị lớn nhất thì
\(\frac{3}{|x-1|+\left(x-1\right)4+1}\)lớn nhất và sẽ luôn có nghĩa với \(x\inℤ\)
=>\(|x-1|+\left(x-1\right)4+1\)nhỏ nhất và >0=>\(|x-1|+\left(x-1\right)4+1\)=1
=>\(|x-1|+\left(x-1\right)4\)=0
=>x=0
=>c=\(\frac{7}{2}\)
7/2 nha
giải đi bn
plzzz
sao vậy bn
cái 1
nha bn