<=>±x-3=±-3-x
=>x-3=3-x
để 2 vế = nhau thì kq fai =0
=>x=3
thử lại x-3=0=3-3
ta có:|x-3|=|3-x|
ta có: |x-3|=-|x-3|
|x-3|+|x-3|=0
2|x-3|=0
x-3=0
x=3
<=>±x-3=±-3-x
=>x-3=3-x
để 2 vế = nhau thì kq fai =0
=>x=3
thử lại x-3=0=3-3
ta có:|x-3|=|3-x|
ta có: |x-3|=-|x-3|
|x-3|+|x-3|=0
2|x-3|=0
x-3=0
x=3
Số các giá trị của x thỏa mãn: \(\frac{\left|x\text{-}5\right|}{\left|x\text{-}3\right|}=\frac{\left|x\text{-}1\right|}{\left|x\text{-}3\right|}\)
a, \(\text{[}\left(x-y\right)^3+3\left(x-y\right)\text{]}:\dfrac{1}{3}\left(x-y\right)\)
b, \(\left(8x^3-27y^3\right):\left(2x-3y\right)\)
c, \(\text{[}5\left(x+2y\right)^6-6\left(x+2y\right)^5\text{]}:2\left(x+2y\right)^4\)
Số giá trị hữu tỉ của x thỏa mãn \(^{x^2\left(\frac{2}{3}\text{-}5x\right)=0}\) là
Tìm các cặp số nguyên \(\left(x;y\right)\)thõa mãn:
\(\text{|}x+2\text{|}+\text{|}x-1\text{|}=3-\left(y+2\right)^2\)
tính giá trị của biểu thức
a) \(A=2x^2-\dfrac{1}{3}y,t\text{ại}x=2;y=9\)
b) \(P=2x^2+3xy+y^2t\text{ại }x=-\dfrac{1}{2};y=\dfrac{2}{3}\)
c) \(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)t\text{ại}x=2;y=\dfrac{1}{4}\)
Cho a, b, c là ba số dương thỏa mãn: \(\dfrac{\text{2b+c-a}}{a}=\dfrac{\text{2c-b+a}}{b}=\dfrac{\text{ 2a+b-c}}{c}\)
Tính giá trị biểu thức: P = \(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3a-2c\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)} \)
Tìm các cặp số nguyên \(\left(x;y\right)\)thõa mãn
\(\left(2-x\right)\left(x+1\right)=\text{|}y+1\text{|}\)
\(\text{Tìm giá trị lớn nhất của biểu thức.}\frac{3\left|x\right|+2}{4\left|x\right|-5}\)
Tập hợp các giá trị của x thỏa mãn: \(\left(x-5\right)^2-\)/5-x/