Áp dụng định lí Vi-et ta có \(\begin{cases}x_1+x_2=8\\x_1.x_2=6\end{cases}\)
\(D=x_1^4-x_2^4=\left(x_1^2+x_2^2\right)\left(x_1-x_2\right)\left(x_1+x_2\right)\)\(=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\sqrt{\left|\left(x_1+x_2\right)^2-4x_1x_2\right|}\)
\(H=x_1^6+x_2^6=\left(x_1^2+x_2^2\right)\left(x_1^4+x_2^4-x_1^2x_2^2\right)=\left[\left(x_1+x_2\right)^2-2x_1.x_2\right].\left(D-x_1^2x_2^2\right)\)D lấy từ câu trên nhé :)
Áp dụng các giá trị từ đl Vi-et thay vào và tính :)