H24

giả sử \(x_1,x_2\) là nghiệm của phương trình \(x^2-2\sqrt{5}x+2\)=0 Tính giá trị biểu thức E=\(\dfrac{x_1^2+x_1x_2+x^2_2}{x_1^2+x^2_2}\)

H24
26 tháng 2 2022 lúc 11:03

\(\Delta'=\left(-\sqrt{5}\right)^2-1.2=5-2=3>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2\sqrt{5}\\x_1x_2=2\end{matrix}\right.\)

\(E=\dfrac{x^2_1+x_1x_2+x^2_2}{x^2_1+x^2_2}\\ =\dfrac{\left(x_1+x_2\right)^2-x_1x_2}{\left(x_1+x_2\right)^2-2x_1x_2}\\ =\dfrac{\left(2\sqrt{5}\right)^2-2}{\left(2\sqrt{5}\right)^2-2.2}\\ =\dfrac{20-2}{20-4}\\ =\dfrac{18}{16}\\ =\dfrac{9}{8}\)
 

Bình luận (0)
NT
26 tháng 2 2022 lúc 11:01

\(E=\dfrac{\left(x_1+x_2\right)^2-x_1x_2}{\left(x_1+x_2\right)^2-2x_1x_2}=\dfrac{4.5-2}{4.5-2.2}=\dfrac{18}{16}=\dfrac{9}{8}\)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
NN
Xem chi tiết
NV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
TV
Xem chi tiết
NL
Xem chi tiết
HL
Xem chi tiết