Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giả sử phương trình bậc 2 : x^2 + ax + b + 1 = 0 có hai nghiệm nguyên dương. chứng minh rằng : a^2 + b^2 là 1 hợp số
Cho phương trình 3x2 + ax + 3b + 27=0 ( x là ẩn; a, b là các số nguyên khác 0). Giả sử phương trình có các nghiệm đều nguyên. Chứng minh rằng a2 + b2 là hợp số
Giả sử phương trình bậc hai \(x^2+ax+b+1=0\)có hai nghiệm nguyên dương . Chưng minh rằng \(a^2+b^2\)là hợp số
Các bạn giải chi tiết giùm mk nhé
Cho phương trình: x2 - ax + b = 0 trong đó a, b là các số nguyên tố. Biết rằng phương trình có 2 nghiệm dương phân biệt. Chứng minh: a2 + b2 là số nguyên tố.
Giả sử phương trình x^2 +mx+n+1=0 có các nghiệm x1,x2 là các số nguyên khác 0. Chứng minh rằng m^2 +n^2 là 1 hợp số
Giả sử phương trình bậc hai \(x^2+ax+b+1=0\) có hai nghiệm dương. CMR \(a^2+b^2\)là hợp số
Giả sử phương trình Ax2+Bx+C=0 có hai nghiệm x1, x2 thì x + x=-B/A, x*x=C/A. Cho a khác 0 và giả sử phương trình x2 - ax - 1/2a2. Chứng minh rằng x14+x24 >=2+√2
Cho phương trình x2-ax+1=0 với a là tham số nguyên lớn hơn 1.
Chứng minh rằng phương trình đã cho có nghiệm x và đồng thời x + 1/x là số nguyên dương.
Giả sử phương trình x^2+mx+n+1=0 có các nghiệm x1,x2 là các số nguyên khác 0. Chứng minh m^2 +n^2 là 1 hợp số