\(\left(a+b-c\right)^3>0\Leftrightarrow\left(a+b\right)^3-c^3-3\left(a+b\right)c\left(a+b-c\right)>0\)
\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[ab-c\left(a+b-c\right)\right]>c^3\)
\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[ab-ca-cb+c^2\right]>c^3\)
\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]>c^3\)
\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left(a-c\right)\left(b-c\right)>c^3\)
Mặt khác : \(abc\ge\left(a+b\right)\left(a-c\right)\left(b-c\right)\)( chứng minh hộ mình cái )
=> dpcm