\(\sqrt{\frac{1-x}{x}}=\frac{2x+x^2}{1+x^2}\)
\(\Leftrightarrow\sqrt{\frac{1-x}{x}}-1=\frac{2x+x^2}{1+x^2}-1\)
\(\Leftrightarrow\frac{-\left(2x-1\right)}{\sqrt{\frac{1-x}{x}}+1}-\frac{2x-1}{1+x^2}=0\)
\(\Leftrightarrow\left(2x-1\right)\left(\frac{-1}{\sqrt{\frac{1-x}{x}}+1}-\frac{1}{1+x^2}\right)=0\)
Dễ thấy: \(\frac{-1}{\sqrt{\frac{1-x}{x}}+1}-\frac{1}{1+x^2}< 0\)
\(\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)