\(G=\frac{18.123+9.4567.2+3.5310.6}{1+4+7+...+55+58-410}\)
\(\rightarrow G=\frac{18.123+18.4567+18.5310}{\left(58+1\right).20\div2-410}\)
\(\rightarrow G=\frac{18.\left(123+4567+5310\right)}{590-410}\)
\(\rightarrow G=\frac{18.10000}{180}\)
\(\rightarrow G=\frac{180000}{180}\)
\(\rightarrow G=\frac{180.1000}{180}\)
\(\rightarrow G=1000\)
\(G=\left(18\cdot123+9\cdot4567\cdot2+3\cdot5310\cdot6\right)\div\left(1+4+7+10+55+58-410\right)\)
\(\left(58-1\right)\div3+1=20\)
\(G=\left(18\cdot123+9\cdot4567\cdot2+3\cdot5310\cdot6\right)\div\left[\left(58+1\right)\times20\div2-410\right]\)
\(G=180000\div180\)
\(G=1000\)