Cho biều thức P=\(\dfrac{x-2\sqrt{x}}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}+\dfrac{1+2x-2\sqrt{x}}{x^2-\sqrt{x}}\)
a) Rút gọn biểu thức P
b) Tìm các giá trị x để P nhận giá trị nguyên
Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{x-1}\right):\left(\dfrac{2x}{x-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)
a. Rút gọn A
b. Tìm x để A = 2
Rút gọn biểu thức:
B=\(\dfrac{3}{x-1}.\sqrt{\dfrac{x^2-2x+1}{9x^2}}\)với 0<x<1
Cho biểu thức \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\), \(x\ge0,x\ne1\)
a) Rút gọn biểu thức A.
b) Giải phương trình \(\left(\sqrt{x}+1\right).A=x\)
c) Đặt \(B=\dfrac{7A}{3\left(2\sqrt{x}-1\right)};x\ge0,x\ne1,x\ne\dfrac{1}{4}\). Tìm số hữu tỉ x để B có giá trị nguyên.
Rút gọn biểu thức sau:
a) A = \(\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}\), x ≠ \(-\sqrt{5}\)
b) B = \(\dfrac{a-2\sqrt{a}-3}{a-9}\), a ≥ 0, a ≠ 9
c) C = \(\sqrt{x-1-2\sqrt{x-2}}\)
Rút gọn biểu thức \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)^2\times\dfrac{x^2-1}{2}-\sqrt{1-x^2}\)
1.giải hệ phương trình:
\(\left\{{}\begin{matrix}2x-y=3\\x+y=0\end{matrix}\right.\)
2.Rút gọn biểu thức
\(A=\dfrac{x+20}{x-4}+\dfrac{2}{\sqrt{x}+2}-\dfrac{6}{\sqrt{x}-2}\) với x\(\ge\)0;x\(\ne\)4
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Rút gọn biểu thức
\(p=\left(\dfrac{x\sqrt{x}}{\sqrt{x}-1}-\dfrac{x^2}{x\sqrt{x}-x}\right)\left(\dfrac{1}{\sqrt{x}}-2\right)\)