Chương I - Căn bậc hai. Căn bậc ba

HL

1.giải hệ phương trình:

\(\left\{{}\begin{matrix}2x-y=3\\x+y=0\end{matrix}\right.\)

2.Rút gọn biểu thức

\(A=\dfrac{x+20}{x-4}+\dfrac{2}{\sqrt{x}+2}-\dfrac{6}{\sqrt{x}-2}\) với x\(\ge\)0;x\(\ne\)4

NT
6 tháng 7 2021 lúc 21:30

1) Ta có: \(\left\{{}\begin{matrix}2x-y=3\\x+y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=3\\x=-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-x=-1\end{matrix}\right.\)

Vậy: (x,y)=(1;-1)

2) Ta có: \(A=\dfrac{x+20}{x-4}+\dfrac{2}{\sqrt{x}+2}-\dfrac{6}{\sqrt{x}-2}\)

\(=\dfrac{x+20+2\left(\sqrt{x}-2\right)-6\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+20+2\sqrt{x}-4-6\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
HL
Xem chi tiết
LN
Xem chi tiết
PK
Xem chi tiết
DN
Xem chi tiết
HC
Xem chi tiết
TP
Xem chi tiết
CW
Xem chi tiết
QT
Xem chi tiết