Cho (x+y+z)2= x2+y2+z2voi x,y,z la ba so khac 0
CMR:
$\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}$
1/x3+1/y3+1/z3=3/xyz
Cho x;y;z là các số khác 0 và x+y+z=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
chứng minh \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=xyz\)
Cho x,y,z>0; \(x^2+y^2+z^3=\frac{5}{3}\)
CMR: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\le\frac{1}{xyz}\)
Cho x, y, z là các số khác không. CMR:
Nếu \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=xyz\)
Cho x,y,z là các số khác 0. Chứng minh rằng:
Nếu \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=xyz\)
1.Cho x,y,z khác 0 thõa mãn x+y+z=xyz và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)
Tính P= \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Cho x,y,z khác 0 thoả \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
Chứng minh rằng \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
cần gấp ạ, thanks mn
Cho \(\hept{\begin{cases}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\x^2+y^2+z^2=17\end{cases}}\)Tính \(xyz\)
Cho x, y, z khác 0 thỏa mãn:
x+y+z=xyz ; \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)
Tính \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)