Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TH

\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)    thõa mãn Đk x+y+z=2

ND
7 tháng 10 2020 lúc 12:47

Tìm Min của \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\) với x + y + z = 2 ?

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{2^2}{2\cdot2}=1\)

Dấu "=" xảy ra khi: \(x=y=z=\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
7 tháng 10 2020 lúc 12:53

Hoặc có thể làm theo cách dụng Cauchy như sau

Ta có: \(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}\cdot\frac{y+z}{4}}=2\cdot\frac{x}{2}=x\)

Tương tự CM được: \(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\) ; \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

Cộng vế lại ta được: \(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\frac{1}{2}\left(x+y+z\right)\ge x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{1}{2}\left(x+y+z\right)=1\)

Dấu "=" xảy ra khi: x = y = z = 2/3

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KH
Xem chi tiết
KT
Xem chi tiết
CR
Xem chi tiết
TU
Xem chi tiết
TU
Xem chi tiết
TM
Xem chi tiết
DQ
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết