Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)
Khi đó x.y = 52
<=> 2k.3k = 52
=> 6k2 = 52
=> k2 = 52/6
=> k = \(\pm\sqrt{\frac{52}{6}}\)
Khi k = \(\sqrt{\frac{52}{6}}\Rightarrow\hept{\begin{cases}x=\sqrt{\frac{52}{6}}.2=\sqrt{\frac{104}{3}}\\y=\sqrt{\frac{52}{6}}.3=\sqrt{78}\end{cases}}\)
Khi k = \(-\sqrt{\frac{52}{6}}\Rightarrow\hept{\begin{cases}x=-\sqrt{\frac{52}{6}}.2=-\sqrt{\frac{104}{3}}\\x=-\sqrt{\frac{52}{6}}.3=-\sqrt{78}\end{cases}}\)
Đặt : \(\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)
Ta có : \(xy=52\Leftrightarrow2k.3k=52\)
\(\Leftrightarrow6k^2=52\Leftrightarrow k^2=\frac{26}{3}\Leftrightarrow k=\pm\sqrt{\frac{26}{3}}\)
TH1 : k = \(\sqrt{\frac{26}{3}}\)
\(x=2.\sqrt{\frac{26}{3}}=\frac{2\sqrt{78}}{3}\); \(y=3.\sqrt{\frac{26}{3}}=\sqrt{78}\)
TH2 : k = \(-\sqrt{\frac{26}{3}}\)
\(x=2.\left(-\sqrt{\frac{26}{3}}\right)=-\frac{2\sqrt{78}}{3}\); \(y=3.\left(-\sqrt{\frac{26}{3}}\right)=-\sqrt{78}\)