A=\(\frac{a^{2010}+2009+1}{\sqrt{a^{2010}+2009}}\)
=\(\sqrt{a^{2010}+2009}+\frac{1}{\sqrt{a^{2010}+2009}}\)
Áp dụng bdt cosi cho 2 số ko âm
ta đc: A >= @
dấu = xảy ra khi a^2010+2009=1
a^2010=-2008( vô lý)
=> dấu = ko xảy ra
vậy A>2
A=\(\frac{a^{2010}+2009+1}{\sqrt{a^{2010}+2009}}\)
=\(\sqrt{a^{2010}+2009}+\frac{1}{\sqrt{a^{2010}+2009}}\)
Áp dụng bdt cosi cho 2 số ko âm
ta đc: A >= @
dấu = xảy ra khi a^2010+2009=1
a^2010=-2008( vô lý)
=> dấu = ko xảy ra
vậy A>2
Chứng minh\(\frac{2010}{\sqrt{2009}}+\frac{2009}{\sqrt{2010}}>\sqrt{2009}+\sqrt{2010}\)
Chứng minh: \(\frac{a^{2010}+2010}{\sqrt{a^{2010}+2009}}>2\)
tính b=\(1^2-2^2+3^2-...+2008^2-2009^2\)
a=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}\)
giải pt:\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
Giải phương trình
\(\frac{\sqrt{x-2009}}{x-2009}+\frac{\sqrt{y-2010}}{y-2010}+\frac{\sqrt{z-2011}}{z-2011}=\frac{3}{4}\)
Giải phương trình: \(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
Giải phương trình :
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
Giải phương trình: \(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
giải pt
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)