\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}\)
\(=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)
\(=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}\)
\(=\frac{-1}{3}\)
Ta có:
\(\frac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\frac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\frac{2^{10}\cdot3^8\cdot\left(1-3\right)}{2^{10}\cdot3^8\cdot\left(1+5\right)}\)
\(=-\frac{2}{6}=-\frac{1}{3}\)
\(\frac{4^5\times9^4-2\times6^9}{2^{10}\times3^8+6^8\times20}\)
\(=\frac{2^{10}\times3^8-2^{10}.3^9}{2^{10}\times3^8+2^{10}\times3^8\times5}\)
\(=\frac{2^{10}\times3^8\left(1-3\right)}{2^{10}\times3^8\left(1+5\right)}\)
\(=\frac{-1}{3}\)