Quy đồng khử mẫu bằng cách nhân với biểu thức để cho mẫu mất căn thức
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Quy đồng khử mẫu bằng cách nhân với biểu thức để cho mẫu mất căn thức
Rút gọn biểu thức: \(\frac{\sqrt{20+8\sqrt{3}} +\sqrt{20-8\sqrt{3}}}{\sqrt{5+2\sqrt{3}}-\sqrt{5-2\sqrt{3}}}-\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{3}}-\sqrt{4-\sqrt{3}}}\)
rút gọn biểu thức N= \(12\left(\sqrt{2}-3\sqrt{18}+212\sqrt{8}\right):\sqrt{2}\)
N=\(\frac{5-\sqrt{5}}{\sqrt{5-1}}-\frac{4}{\sqrt{5+1}}\)
Rút gọn các biểu thức
\(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}} \)
\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(D=\frac{3\sqrt{8}-2\sqrt{12}+20}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
Rút gọn biểu thức: A = \(\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
rút gọn biểu thức:
a, \(\frac{1}{\sqrt{5}-2}-\frac{4}{3-\sqrt{5}}\)
b, \(\frac{4}{3-\sqrt{5}}-\frac{1}{\sqrt{5}-2}\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Rút gọn biểu thức:
a) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}.\sqrt{2}+\frac{4}{5}.\sqrt{200}\right):\frac{1}{8}\)
Rút gọn biểu thức:
a,\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
\(b,\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
\(\frac{2}{\sqrt{4-3\sqrt[3]{5}+2\sqrt{5}-\sqrt[4]{125}}}.\)
rút gọn biểu thức