Ta có :
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Leftrightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12\left(x+y+z\right)}{18+16+15}=\frac{12\cdot49}{49}=12\) ( do \(x+y+z=49\) )
\(\Rightarrow\hept{\begin{cases}\frac{12x}{18}=12\\\frac{12y}{16}=12\\\frac{12z}{15}=12\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\) ( thỏa mãn )
Vậy : \(\left(x,y,z\right)=\left(18,16,15\right)\)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
\(\Rightarrow\frac{12x+12y+12z}{18+16+15}=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{12\left(x+y+z\right)}{49}=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) có x + y + z = 49
\(\Rightarrow\frac{12\cdot49}{49}=12=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\hept{\begin{cases}2x=36\\3y=48\\4z=60\end{cases}\Rightarrow\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}}\)
Ta có : \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}< =>\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau :
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12.\left(x+y+z\right)}{18+16+15}=\frac{12.49}{19}=12\)
\(=>\hept{\begin{cases}\frac{12x}{18}=12=>12x=12.18=>x=18\\\frac{12y}{16}=12=>12y=12.16=>y=16\\\frac{12z}{15}=12=>12z=12.15=>z=15\end{cases}}\)
Vậy ...
Trả lời:
Ta có:\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Leftrightarrow\frac{2x}{36}=\frac{3y}{48}=\frac{4z}{60}\)
\(\Leftrightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Đặt\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=k\)
\(\Rightarrow\hept{\begin{cases}x=18k\\y=16k\\z=15k\end{cases}}\)
Mà\(x+y+z=49\)
\(\Rightarrow18k+16k+15k=49\)
\(\Leftrightarrow49k=49\)
\(\Leftrightarrow k=1\)
\(\Rightarrow\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)
Vậy\(\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)
Hok tốt!
Vuong Dong Yet