Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
K= \(\left(\frac{\sqrt{a}}{\sqrt{a}-2}+\frac{\sqrt{2}}{\sqrt{a}+2}\right):\frac{\sqrt{4a}}{a-4}\)
(a#4; a>0)
Rút gọn
Rút gọn và tính giá trị biểu thức
a, \(\frac{x-11}{\sqrt{x-2}-3}\) x=23-12\(\sqrt{3}\)
b, \(\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}\) với a=\(\sqrt{2}\)
c, \(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}}\) với a=7,25 và b=3,25
d, \(\sqrt{10a^2-4a\sqrt{10}+4}\) với a= \(\sqrt{\frac{2}{5}}+\sqrt{\frac{5}{2}}\)
1 Tính
a) \(\sqrt{0.9\times0.16\times0.4}\)
b) \(\sqrt{0,0016}\)
c)\(\frac{\sqrt{72}}{\sqrt{2}}\)
d) \(\frac{\sqrt{2}}{\sqrt{288}}\)
2 Rút gọn
a) \(\frac{2}{a}.\sqrt{\frac{16a^2}{9}}\left(a< 0\right)\)
b) \(\frac{3}{a-1}.\sqrt{\frac{4a^2-8a+4}{25}}\left(a>1\right)\)
c) \(\frac{\sqrt{243a}}{\sqrt{3a}}\left(a>0\right)\)
d) \(\frac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}\left(a\ne0,b\ne0\right)\)
rút gọn
P=\(\left(\frac{3\sqrt{a}}{\sqrt{a}+4}+\frac{\sqrt{a}}{\sqrt{a}-4}+\frac{4\left(a+2\right)}{16-a}\right):\left(1-\frac{2\sqrt{a}+5}{\sqrt{a}+4}\right)\)
Thu gọn biểu thức
a, A = \(\frac{2\sqrt{3-\sqrt{3+\sqrt{3+\sqrt{48}}}}}{\sqrt{6}-2}\)
b, B = \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
Tính các tổng
a. \(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+....+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)
b. \(B=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{121\sqrt{120}+120\sqrt{121}}\)
Mọi người giúp tớ với nhé!! Cảm ơn trước nha!!
bài 1: cho biểu thức: P=\(\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a để P nguyên
bài 2: cho biểu thức: P=\(\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a (a>8) để P nguyên
rút gọn P: P=\(\left(\frac{a+\sqrt{a^2-b^2}}{a-\sqrt{a^2}-b^2}-\frac{a-\sqrt{a^2-b^2}}{a+\sqrt{a^2-b^2}}\right):\frac{4\sqrt{a^4-a^2b^2}}{b^2}\)
rút gọn biểu thức sau
P=(\(\frac{3\sqrt{a}}{\sqrt{a}+4}+\frac{\sqrt{a}}{\sqrt{a}-4}+\frac{4\left(a+2\right)}{16-a}\))\(:\left(1-\frac{2\sqrt{a}+5}{\sqrt{a}-4}\right)\)