Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

HT

\(\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+...+\frac{100^2}{99.101}\)

Giúp mình với

H24
24 tháng 4 2019 lúc 22:35

\(\frac{2^2}{1.3}+\frac{3^2}{2.4}+...+\frac{100^2}{99.101}\\ =\frac{2.2}{1.3}+\frac{3.3}{2.4}+...+\frac{100.100}{99.101}\\ =\frac{2.}{1.}\frac{3.}{2.}\frac{...}{...}\frac{100}{99}+\frac{2.}{3.}\frac{3.}{4.}\frac{...}{...}\frac{100}{101}\\ =\frac{100}{1}+\frac{2}{101}\\ =\frac{10100}{101}+\frac{2}{101}\\ =\frac{10102}{101}\)

Bình luận (0)
KN
25 tháng 4 2019 lúc 6:05

\(\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+...+\frac{100^2}{99.101}\)

\(=\frac{2.2}{1.3}+\frac{3.3}{2.4}+\frac{4.4}{3.5}+...+\frac{100.100}{99.101}\)

\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4.5...101}\)

\(=100.\frac{2}{101}\)

\(=\frac{200}{101}\)

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
TN
Xem chi tiết
HH
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
HU
Xem chi tiết
NC
Xem chi tiết
HH
Xem chi tiết