\(\frac{2^{10}\cdot13+2^{10}\cdot37}{2^8\cdot90}\)
\(=\frac{2^{10}\cdot\left(13+37\right)}{2^8\cdot2\cdot3^2\cdot5}\)
\(=\frac{2^{10}\cdot50}{2^9\cdot3^2\cdot5}\)
\(=\frac{2^{10}\cdot2\cdot5^2}{2^9\cdot3^2\cdot5}=\frac{2^{11}\cdot5^2}{2^9\cdot3^2\cdot5}\)
\(=\frac{2^2\cdot5}{3^2}=\frac{20}{9}\)
\(\frac{2^{10}.13+2^{10}.27}{2^8.90}\)
=\(\frac{2^{10}.\left(13+27\right)}{2^8.90}\)
=\(\frac{2^{10}.40}{2^8.90}\)
=\(\frac{2^2.4}{1.9}\)
=\(\frac{4.4}{9}\)
=\(\frac{16}{9}\)