\(\frac{20\cdot3^{37}+2^{35}\cdot45}{5\cdot3^{37}+45\cdot2^{33}}\)
\(=\frac{2^2\cdot5\cdot3^{37}+2^{35}\cdot5\cdot3^2}{5\cdot3^{37}+5\cdot3^2\cdot2^{33}}\)
\(=\frac{2^2\cdot5\cdot3^2\cdot\left(3^{35}+2^{33}\right)}{5\cdot3^2\left(3^{35}+2^{33}\right)}\)
\(=2^2=4\)
Ta có : \(\frac{20.3^{37}+2^{35}.45}{5.3^{37}+45.2^{33}}=\frac{5.2^2.3^{37}+2^{33}.2^2.45}{5.3^{37}+45.2^{33}}=\frac{2^2\left(5.3^{37}+2^{33}.45\right)}{5.3^{37}+45.2^{33}}=2^2=4\)