Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TC

\(\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\)

Tìm giá trị nhỏ nhất của biểu thức

 

TT
25 tháng 8 2020 lúc 11:22

ĐKXĐ : \(x\ge0\)

Đặt \(A=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\)

\(=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)

\(=2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\)

Áp dụng BĐT AM - GM cho hai số dương ta có :

\(2011\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{2011\sqrt{x}\cdot\frac{1}{\sqrt{x}}}=2\sqrt{2011}\)

Do đó : \(A\ge2\left(\sqrt{2011}-1\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2011}\)

Vậy \(A_{min}=2\left(\sqrt{2011}-1\right)\) khi \(x=\frac{1}{2011}\)

Bình luận (0)
 Khách vãng lai đã xóa
KN
25 tháng 8 2020 lúc 21:11

\(ĐK:x>0\)

Xét biểu thức\(\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}-2\left(\sqrt{2011}-1\right)+2\left(\sqrt{2011}-1\right)\)\(=\frac{2011x-2\sqrt{x}+1-2\sqrt{2011x}+2\sqrt{x}}{\sqrt{x}}+2\left(\sqrt{2011}-1\right)\)\(=\frac{\left(\sqrt{2011x}-1\right)^2}{\sqrt{x}}+2\left(\sqrt{2011}-1\right)\ge2\left(\sqrt{2011}-1\right)\)

\(\Rightarrow\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\ge2\left(\sqrt{2011}-1\right)\)

Đẳng thức xảy ra khi \(\sqrt{2011x}=1\Leftrightarrow2011x=1\Leftrightarrow x=\frac{1}{2011}\)

Vậy giá trị nhỏ nhất của biểu thức là \(2\left(\sqrt{2011}-1\right)\), đạt được khi \(x=\frac{1}{2011}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
NT
Xem chi tiết
AN
Xem chi tiết
TL
Xem chi tiết
LH
Xem chi tiết
NN
Xem chi tiết
VD
Xem chi tiết
TL
Xem chi tiết
SS
Xem chi tiết