So sánh \(\frac{2008}{\sqrt{2009}}+\frac{2009}{\sqrt{2008}}\)và \(\sqrt{2008}+\sqrt{2009}\)
so sánh 2008 với tổng 2009 số hạng sau\(s=\frac{2008+2007}{2009+2008}+\frac{^{2008^2+2007^2}}{2009^2+2008^2}+.....+\frac{2008^{2009}+2007^{2009}}{2009^{2009}+2008^{2009}}\)
tính tổng sau :\(c=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\)\(\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
Chứng minh rằng: \(\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\right)^{2008}\) biết \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=....=\frac{a_{2008}}{a_{2009}}\)
so sánh giúp mình \(\frac{2008^{2008}+1}{2008^{2009}+1}\)va\(y=\frac{2008^{2009}+1}{2008^{2010}+1}\)
cho: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.....=\frac{a_{2008}}{a_{2009}}\)
CMR (\(\frac{a_1}{a_{2009}}\frac{a_1+a_2+....+a_{2008}}{a_2+a_3+....+a_{2009}}\))^2008
So sánh : \(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)với 4
cho \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=....=\frac{a_{2008}}{a_{2009}}\)
cmr ta có đẳng thức \(\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\right)^{2008}\)
cho \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=........=\frac{a_{2008}}{a_{2009}}\)Ta co dang thuc \(\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+.......+a_{2008}}{a_2+.......+a_{2009}}\right)^{2008}\)