\(ĐK:x,y,z\ne0\)
Đặt \(A=\frac{xy}{z^2}+\frac{xz}{y^2}+\frac{yz}{x^2}=\frac{xyz}{z^3}+\frac{xyz}{y^3}+\frac{xyz}{x^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)
Dễ CM \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz\)
=>\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\left(\frac{1}{x}\right)^3+\left(\frac{1}{y}\right)^3+\left(\frac{1}{z}\right)^3=\frac{3}{xyz}\)
Do đó \(A=xyz.\frac{3}{xyz}=3\)
Cách 1 : áp dụng hđt a3 +b3 +c3 = 3abc nếu a+b+c = 0 . cách này thì bạn có thể chúng minh đc nhưng hơi dài.
Cách 2 : ta sử dụng trực tiếp
\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=0 =>\(\frac{1}{x}\)+\(\frac{1}{y}\)=\(\frac{-1}{z}\)=> (\(\frac{1}{x}\)+\(\frac{1}{y}\))3 = \(\frac{-1}{z^3}\)=> \(\frac{1}{x^3}\)+\(\frac{1}{y^3}\)\(+3\frac{1}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)\)= \(\frac{-1}{z^3}\) ( áp dụng từ hđt quen thuộc \(\left(a+b\right)^3=a^3+b^3+3a^2b+3ab^2=a^3+b^3+3ab\left(a+b\right)\)) => \(\frac{1}{x^3}+\frac{1}{y^3}+3\frac{1}{xy}\left(\frac{-1}{z}\right)\)= \(\frac{-1}{z^3}\)(vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)= 0)
chuyển vế ta có \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)( tương tự cách 1 nhưng cách 1 là ta áp dụng vào dạng tương tự)
Cũng từ 1 trong trong 2 cách này ta có đoạn sau giống nhau
\(\frac{xy}{z^2}+\frac{xz}{y^2}+\frac{yz}{x^2}=\frac{xyz}{z^3}+\frac{xyz}{y^3}+\frac{xyz}{x^3}=xyz\left(\frac{1}{z^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)