Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
2) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
3) \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\)
4)\(\frac{2x+3}{3}=\frac{5-4x}{2}\)
5.\(\frac{5x+3}{12}=\frac{1+2x}{9}\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{7}{6\left(x+5\right)}\)
\(1.\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}
\)
2.\(\frac{2x^4}{\left(x+1\right)^2}-\frac{5x^2}{x+1}+2=0\)
3.\(\left(x+\frac{1}{x}\right)^2-6\left(x+\frac{1}{x}\right)+8=0\)
4.\(\left(x^2+\frac{1}{x^2}\right)-4\left(x+\frac{1}{x}\right)+6=0\)
5.\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
Giải phương trình sau:
\(\frac{4x^2-\left(x-3\right)^2}{9\left(x^2-1\right)}-\frac{x^2-9}{\left(2x+3\right)^2-x^2}+\frac{\left(2x-3\right)^2-x^2}{4x^2-\left(x+3\right)^2}=1\)
Giari các phương trình sau.
a. \(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\)
b. \(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\)
c. \(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\)
d. \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
e. \(\frac{x}{2x+6}-\frac{x}{2x+2}=\frac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
f. \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)
g. \(\frac{5}{x+7}+\frac{8}{2x+14}=\frac{3}{2}\)
h. \(\frac{x-1}{x}-\frac{1}{x+1}=\frac{2x-1}{x^2+x}\)
\(\frac{x}{2x+6}-\frac{x}{2x+2}=\frac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
1, giải pt sau
a,\(\frac{9}{x}+2=-6\)
b,\(\frac{7}{x+1}+\frac{-18x}{x\left(x^2+4x+3\right)}=\frac{-4}{x+3}\)
c,\(\frac{3x-1}{x-1}-1=\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}\)
Giải phương trình sau
a) \(\frac{3}{2\left(x+1\right)}-\frac{x-2}{9}=\frac{2x+1}{18}\)
b) \(\frac{2x}{\left(x+1\right)\left(x-2\right)}+\frac{-2}{x-1}=\frac{1}{x+2}\)
a) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
b)\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
c)\(\frac{x +1}{x-2}+\frac{x-1}{x +2}=\frac{2\left(x^{2^{ }}+2\right)}{x^2-4}\)
d)(2x+3)\(\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)