NM

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9702}+\frac{1}{9900}\)

chúc bạn làm tốt !

HM
31 tháng 5 2018 lúc 18:28

\(\frac{1}{2}+\frac{1}{6}\)\(+\frac{1}{12}\)\(+...+\frac{1}{9702}\)\(+\frac{1}{9900}\)

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}\)\(+...+\frac{1}{98\cdot99}\)\(\frac{1}{99\cdot100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\)\(\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)

\(\frac{100}{100}\)\(\frac{1}{100}\)

\(\frac{99}{100}\)

Bình luận (0)
IY
31 tháng 5 2018 lúc 17:29

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9702}+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Bình luận (0)
TP
31 tháng 5 2018 lúc 17:32

Gọi dãy trên là A

\(\Leftrightarrow A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow A=1-\frac{1}{100}+0+...+0\)

\(\Leftrightarrow A=\frac{99}{100}\)

Bình luận (0)
NM
31 tháng 5 2018 lúc 17:43

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9702}+\frac{1}{9900}\)

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(S=1-\frac{1}{100}\)

\(S=\frac{99}{100}\)

Bình luận (0)
PC
31 tháng 5 2018 lúc 20:10

1/2+1/6+1/12+.....+1/9072+1/9900

=1/1.2+1/2.3+1/3.4+...+1/98.99+1/99.100

=1/1-1/2+1/2-1/3+1/3-1/4+.....+1/98-1/99+1/99-1/100

=1/1-1/100

=99/100

Bình luận (0)
KS
2 tháng 6 2018 lúc 6:24

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9702}+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Bình luận (0)
DA
29 tháng 6 2018 lúc 8:06

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{100}=\frac{99}{100}\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
LD
Xem chi tiết
AN
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
BN
Xem chi tiết
TL
Xem chi tiết
DJ
Xem chi tiết
H24
Xem chi tiết