Bài 1. So sánh
a) \(\sqrt{2009}-\sqrt{2008}\)và \(\sqrt{2007}-\sqrt{2006}\)
b) \(\sqrt{11+\sqrt{96}}\)và \(\frac{2\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}\)
Bài 2. Tính tổng
\(T=\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)
\(D=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{120\sqrt{121}+121\sqrt{120}}\)
ai cứu mk ikk
chứng minh rằng \(\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{2006^2}+\frac{1}{2007^2}}\) là số hửux tỉ
a)
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{24}+\sqrt{25}}\)
b)
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{2006}+\sqrt{2007}}\)
Rút gọn các biểu thức sau:
a,\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}\)
b,\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{2006}+\sqrt{2007}}\)
c,\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Tính
a) \(\frac{1+3\sqrt{2}-2\sqrt{3}}{\sqrt{6}+\sqrt{3}+\sqrt{2}}\)
b) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3+\sqrt{4}}}+...+\frac{1}{\sqrt{2006}+\sqrt{2007}}\)
Tính:
\(S=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{2006^2}+\frac{1}{2007^2}}\)
a/Tính: A= \(\sqrt{1+2006^2+\frac{2006^2}{2007^2}}+\frac{2006}{2007}\)
b/Cho A=\(\sqrt{2015^2-1}-\sqrt{2014^2-1}\)và B=\(\frac{2.2014}{\sqrt{2015^2-1}+\sqrt{2014^2-1}}\)
So sánh A vs B
Chứng tỏ rằng
\(\frac{2}{3\left(1+\sqrt{2}\right)}+\frac{2}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{2}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{2}{4011\left(\sqrt{2005}+\sqrt{2006}\right)}<1-\frac{1}{\sqrt{2006}}\)
Chứng tỏ rằng
\(\frac{2}{3\left(1+\sqrt{2}\right)}+\frac{2}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{2}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{2}{4011\left(\sqrt{2005}+\sqrt{2006}\right)}<1-\frac{1}{\sqrt{2006}}\)