G6

\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n.\left(2n+2\right)}\)

IY
15 tháng 7 2018 lúc 17:51

\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2n.\left(2n+2\right)}\))

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)\)

\(=\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)

\(=\frac{1}{4}-\frac{1}{4n+4}=\frac{1}{4}-\frac{1}{4.\left(n+1\right)}\)

\(=\frac{n+1}{4.\left(n+1\right)}-\frac{1}{4.\left(n+1\right)}=\frac{n+1-1}{4.\left(n+1\right)}=\frac{n}{4.\left(n+1\right)}\)

Bình luận (0)
G6
15 tháng 7 2018 lúc 17:57

bạn ơi mình ko hiểu chỗ \(\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)

Bình luận (0)
NP
16 tháng 7 2018 lúc 11:32

thì là do

\(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n+2}\right)=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{2n+2}=\frac{1}{4}-\frac{1}{2.\left(2n+2\right)}\)

:)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
BN
Xem chi tiết
IM
Xem chi tiết
DT
Xem chi tiết
Xem chi tiết