NL

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.....+\frac{1}{1+2+3+.....+50}\)

XO
8 tháng 6 2019 lúc 15:10

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1275}\)

\(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2550}\right)\)

\(2\times(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51})\)

\(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(2\times\left(\frac{1}{2}-\frac{1}{51}\right)\)

\(2\times\frac{49}{102}\)

\(\frac{49}{51}\)

Bình luận (0)

A=1/1+2 + 1/1+2+3 + 1/1+2+3+4 +... + 1/1+2+3+...+50

A = 1/3 + 1/6 + 1/10 + 1/15 + ...+1/1275

Nhân cả hai vế với 1/2, ta có:

A/2 = 1/6 + 1/12 + 1/20 + 1/30 + ... + 1/2550

A/2 = 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + ... + 1/50x51

A/2 = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +..... + 1/50 - 1/51

A/2 = 1-1/51

A/2 = 49/102

A = 49/51

Bình luận (0)
HS
8 tháng 6 2019 lúc 15:12

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)

\(=\frac{2}{2(1+2)}+\frac{2}{2(1+2+3)}+\frac{2}{2(1+2+3+4)}+...+\frac{2}{2(1+2+3+...+50)}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{2\left[\frac{(1+50)\cdot50}{2}\right]}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{2550}\)

\(=2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2550}\right]\)

\(=2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{50\cdot51}\right]\)

\(=2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right]\)

\(=2\left[\frac{1}{2}-\frac{1}{51}\right]=\frac{49}{51}\)

Bình luận (0)
NP
8 tháng 6 2019 lúc 15:28

\(\frac{1}{1+2}\)+\(\frac{1}{1+2+3}\)+\(\frac{1}{1+2+3+4}\)+....+\(\frac{1}{1+2+3+4+....+50}\)

B=\(\frac{1}{\left[1+2\right]\cdot2:2}\)+\(\frac{1}{\left[1+3\right]\cdot3:2}\)+\(\frac{1}{\left[1+4\right]\cdot4:2}\)+....+\(\frac{1}{\left[1+50\right]\cdot50:2}\)

B=\(\frac{1}{3\cdot2:2}\)+\(\frac{1}{4\cdot3:2}\)+\(\frac{1}{5\cdot4:2}\)+....+\(\frac{1}{51\cdot50:2}\)

B*\(\frac{1}{2}\)=\(\frac{1}{3\cdot2}\)+\(\frac{1}{4\cdot3}\)+\(\frac{1}{5\cdot4}\)+....+\(\frac{1}{51\cdot50}\)

B*\(\frac{1}{2}\)=\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+...+\(\frac{1}{50}\)-\(\frac{1}{51}\)

B*\(\frac{1}{2}\)=\(\frac{1}{2}\)-\(\frac{1}{51}\)

B*\(\frac{1}{2}\)=\(\frac{49}{102}\)

B=\(\frac{49}{102}\):\(\frac{1}{2}\)

B=\(\frac{49}{51}\)

Dấu . là Dấu nhân

Bình luận (0)
NH
8 tháng 6 2019 lúc 16:42

Đặt \(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)

\(\Rightarrow A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1275}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2550}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{50\times51}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{50}-\frac{1}{50}\right)-\frac{1}{51}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{51}=\frac{49}{102}\)

\(\Rightarrow A=\frac{49}{102}:\frac{1}{2}=\frac{49}{51}\)

~ Hok tốt ~

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
NN
Xem chi tiết
TN
Xem chi tiết
TD
Xem chi tiết
PD
Xem chi tiết
WM
Xem chi tiết
PV
Xem chi tiết
LD
Xem chi tiết
CL
Xem chi tiết