So sánh:
10^1000/10^1001 và 10^1001/10^1002
Cho tổng gồm 1016 số hạng là:
\(S=\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2016}\)
hãy so sánh S với 11/14
1+2+3-4-5-6+7+8+9-10-11-12+....+999+1000+1001-1002-1003-1004+1005+1006
So sánh A=2004/2005 và B= 2005/2006
B= 1001/1002 và B=1002/1003
so sanh \(\frac{1001^{1001}}{1002^{1002}}\)và \(\frac{1001^{1001}+101101}{1002^{1002}+101202}\)
SỐ NÀO LỚN NHẤT
1000 NHÂN 1003 PHẦN 1001 NHÂN 1002 ; 1001 NHÂN 1002 PHẦN 1003 NHÂN 1001 ; 1000 NHÂN 1002 PHẦN 1003 NHÂN 1001
GIẢI ĐÚNG MÌNH TICK VÀ GIẢI RA NHÉ
CHỨNG MINH \(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{1500}>\frac{1}{3}\)
giúp mình với 1h mình hc r,cảm ơn nhaaaaaa
Cho S = \(\frac{-1}{1001}+\frac{-1}{1002}+\frac{-1}{1003}+...+\frac{-1}{2000}\)
Chứng tỏ rằng S<\(\frac{-7}{12}\)
Chứng minh rằng : \(\frac{1}{201}< \frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+\frac{1}{1005}< \frac{1}{201}\)Ai giải nhanh mình tick nha