\(F=2+2^2+2^3+...+2^{100}\)
\(2F=2^2+2^3+2^4+...+2^{101}\)
\(2F-F=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(F=2^{101}-2\)
Vậy...
\(E=3^0+3^1+3^2+...+3^{100}\)
\(E=1+3+3^2+...+3^{100}\)
\(3E=3+3^2+...+3^{101}\)
\(3E-3E=\left(3+3^2+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)
\(2E=3^{101}-1\)
\(E=\frac{3^{101}-1}{2}\)
Vậy...