Trong các phát biểu sau
a. Trực tâm là giao điểm của ba đường phân giác.
b. Hình bình hành có hai đường chéo bằng nhau.
c. Hình thoi có hai đường chéo vuông góc.
d. Trọng tâm là giao điểm của ba đường trung tuyến.
e. Hình bình hành có hai đường chéo cắt nhau tại trung điểm của mỗi đường.
Các phát biểu đúng là:
A. b, c, d
B. c, d, e
C. a, c, d, e
D. c, d
a) Cho tứ giác ABCD không phải là hình bình hành, AC cắt BD tại O có OB = OD. Gọi M, N lần lượt là trung điểm của AB và CD, MN cắt AC tại I. Chứng minh rằng \(\overrightarrow{MI}=\overrightarrow{IN}\)
b) Cho tứ giác ABCD có 2 đường chéo cắt nhau tại I. Biết \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\). Chứng minh rằng tứ giác ABCD là hình bình hành
Cho các mệnh đề:
(1) “ 3 là số vô tỉ nếu và chỉ nếu 3 là số hữu tỉ”
(2) “Tứ giác là hình thang có hai cạnh bên bằng nhau nếu và chỉ nếu nó là hình bình hành”
(3) “Tứ giác là hình bình hành có hai cạnh kề bằng nhau nếu và chỉ nếu nó là hình thoi”
(4) “3 > 4 khi và chỉ khi 1 > 2”
Số mệnh đề sai là:
A. 1
B. 4
C. 2
D. 3
1/Trong các mệnh đề sau, mệnh đề nào sai?
A. Tất cả các số tự nhiên đều không âm.
B. Nếu tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác là hình bình hành.
C. Nếu tứ giác là hình chữ nhật thì tứ giác có hai đường chéo bằng nhau.
D. Nếu tứ giác là hình thoi thì tứ giác có hai đường chéo vuông góc với nhau.
2/ Chọn khẳng định sai.
A. Mệnh đề P và mệnh đề phủ định , nếu P đúng thì P- sai và điều ngược lại chắc đúng.
B. Mệnh đề P và mệnh đề phủ định P- là hai câu trái ngược nhau.
C. Mệnh đề phủ định của mệnh đề P là mệnh đề không phải P được kí hiệu là P- .
D. Mệnh đề P : “ số pi là số hữu tỷ” khi đó mệnh đề phủ định P- là: “ sô pi là số vô tỷ”.
Phát biểu mệnh đề P ⇔ Q và xét tính đúng sai của nó với:
P: "Tứ giác ABCD là hình thoi" và Q:" Tứ giác ABCD là hình bình hành có hai đường chéo vuông góc với nhau"
A. Phát biểu: "Tứ giác ABCD là hình thoi nếu tứ giác ABCD là hình bình hành có hai đường chéo vuông góc với nhau". Mệnh đề này đúng vì mệnh đề P => Q,Q => P đều đúng.
B. Phát biểu: "Tứ giác ABCD là hình thoi khi và chỉ khi tứ giác ABCD là hình bình hành có hai đường chéo vuông góc với nhau". Mệnh đề này đúng vì mệnh đề P => Q, Q => P đều đúng.
C. Phát biểu: "Tứ giác ABCD là hình thoi khi và chỉ khi tứ giác ABCD là hình bình hành có hai đường chéo vuông góc với nhau". Mệnh đề này sai vì mệnh đề P => Q, Q => P đều sai.
D. Phát biểu: "Tứ giác ABCD là hình thoi khi và chỉ khi tứ giác ABCD là hình bình hành có hai đường chéo vuông góc với nhau". Mệnh đề này sai vì mệnh đề P => Q sai, Q => P đúng.
cho tứ giác ABCD. Hai đường chéo cắt nhau tại O. Gọi H,K lần lượt là trực tâm của các tam giác ABO và CDO ; I và J lần lượt là trung điểm của AD và BC. CMR: HK vuông góc IJ ( giải bằng véctơ )
Cho hình bình hành ABCD với B A D ^ < 90 ∘ .
Đường phân giác của góc B C D ^ cắt đường tròn ngoại tiếp tam giác BCD tại O khác C.
Kẻ đường thẳng d đi qua A và vuông góc với CO.
Đường thẳng d lần lượt cắt các đường thẳng CB, CD tại E, F.
2). Chứng minh rằng O là tâm đường tròn ngoại tiếp tam giác △ C E F .
3). Gọi giao điểm của OC và BD là I, chứng minh rằng I B . B E . E I = I D . D F . F I .
Cho hình bình hành ABCD với B A D ^ < 90 ∘ .
Đường phân giác của góc B C D ^ cắt đường tròn ngoại tiếp tam giác BCD tại O khác C.
Kẻ đường thẳng d đi qua A và vuông góc với CO.
Đường thẳng d lần lượt cắt các đường thẳng CB, CD tại E, F.
2). Chứng minh rằng O là tâm đường tròn ngoại tiếp tam giác △ C E F .
3). Gọi giao điểm của OC và BD là I, chứng minh rằng I B . B E . E I = I D . D F . F I .
Các câu sau đây,có bao nhiêu câu là mệnh đề?
(1) Ở đây đẹp quá!
(2) Phương trình x 2 − 3x + 1 = 0 vô nghiệm
(3) 16 không là số nguyên tố
(4) Hai phương trình x 2 − 4x + 3 = 0 và x 2 − x + 3 +1 = 0 có nghiệm chung.
(5) Số π có lớn hơn 3 hay không?
(6) Italia vô địch Worldcup 2006
(7) Hai tam giác bằng nhau khi và chỉ khi chúng có diện tích bằng nhau.
(8) Một tứ giác là hình thoi khi và chỉ khi nó có hai đường chéo vuông góc với nhau
A. 4
B. 6
C. 7
D. 5