Đáp án C
Phương trình hoành độ giao điểm : x + 1 x - 3 = x - 5 ⇔ x ≠ 3 x 2 - 9 x + 14 = 0 ⇔ x = 7 ⇒ y = 2 x = 2 y ⇒ = - 3
Do đó A 7 ; 2 ; B 2 ; - 3 ⇒ d = d 1 + d 2 = 2 + 3 = 5 .
Đáp án C
Phương trình hoành độ giao điểm : x + 1 x - 3 = x - 5 ⇔ x ≠ 3 x 2 - 9 x + 14 = 0 ⇔ x = 7 ⇒ y = 2 x = 2 y ⇒ = - 3
Do đó A 7 ; 2 ; B 2 ; - 3 ⇒ d = d 1 + d 2 = 2 + 3 = 5 .
Đường thẳng d : y = x - 3 cắt đồ thị (C) của hàm số y = x + 1 x - 2 tại hai điểm phân biệt A và B phân biệt. Gọi d 1 , d 2 lần lượt là khoảng cách từ A và B đến đường thẳng D: x-y=0. Tính d = d 1 + d 2
A. d = 3 2
B. d = 3 2 2
C. d = 6
D. d = 2 2
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : x - 1 1 = y - 1 2 = z - 1 1 ; d 2 : x 1 = y + 1 2 = z - 6 - 5 . gọi A là giao điểm của d 1 v à d 2 ; d là đường thẳng qua điểm M (2; 3;1) cắt d 1 , d 2 lần lượt tại B, C sao cho B C = 6 A B . Tính khoảng cách từ O đến đường thẳng d, biết rằng d không song song với mặt phẳng (Oxz)
A. 10 5
B. 10 3
C. 13
D. 10
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C), biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0; x=2 có diện tích bằng 28 5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=-1; x=0 có diện tích bằng:
A. 2 5
B. 1 9
C. 2 9
D. 1 5
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x = 0; x = 2 có diện tích bằng 28 5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x = − 1 ; x = 0 có diện tích bằng:
A. 2 5 .
B. 1 9 .
C. 2 9 .
D. 1 5 .
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C), biết rằng (C) đi qua điểm A − 1 ; 0 . Tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2. Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0, x=2 bằng 28 5 (phần tô đậm trong hình vẽ).
Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x= -1, x=0 có diện tích bằng
A. 2 5
B. 1 9
C. 2 9
D. 1 5
Cho đường thẳng Δ : x + 1 2 = y 3 = x + 1 − 1 và hai điểm A 1 ; 2 ; − 1 , B 3 ; − 1 ; − 5 . Gọi d là đường thẳng đi qua điểm A và cắt đường thẳng Δ sao cho khoảng cách từ B đến đường thẳng d là lớn nhất. Phương trình của d là:
A. x − 3 2 = y 2 = z + 5 − 1
B. x − 1 = y + 2 3 = z 4
C. x + 2 3 = y 1 = z − 1 − 1
D. x − 1 1 = y − 2 2 = z + 1 − 1
Cho (C) là đồ thị của hàm số y = x - 2 x + 1 và đường thẳng d : y = m x + 1 . Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A. m ≥ 0
B. m < 0
C. m ≤ 0
D. m > 0
Cho hàm số y = 2 x - 1 x - 1 có đồ thị (C) và đường thẳng d : y = x + m . Tìm tất cả các tham số m dương để đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt A,B sao cho A B = 10 .
A. m = 2 .
B. m =1.
C. m = 0.
D. m = 0 và m = 2 .
Trong không gian Oxyz cho đường thẳng d: x 2 = y 2 = z + 3 - 1 và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi Δ là đường thẳng đi qua A(2;1;3) vuông góc với đường thẳng (d) và cắt (S) tại 2 điểm có khoảng cách lớn nhất. Khi đó đường thẳng Δ có một vectơ chỉ phương là u → ( 1 ; a ; b ) . Tính a + b
A. 4
B. -2
C. - 1 2
D. 5