PB

Dựng hình thang ABCD (AB // CD), biết AB = AD = 2cm, AC = DC = 4cm.

CT
10 tháng 6 2017 lúc 12:46

Giải bài 31 trang 83 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Phân tích :

Giả sử dựng được hình thang ABCD thỏa mãn yêu cầu đề bài.

Tam giác ADC dựng được vì biết ba cạnh của tam giác.

Điểm B phải thỏa mãn hai điều kiện :

+ B nằm trên tia Ax song song với CD

+ B cách A một đoạn 2cm.

b) Cách dựng:

+ Dựng tam giác ADC có AD = 2cm, AC = 4cm, CD = 4cm.

+ Dựng tia Ax song song với CD và nằm trên cùng một nửa mặt phẳng chứa điểm C bờ là đường thẳng AD.

+ Trên tia Ax lấy điểm B sao cho AB = 2cm.

Kẻ BC ta được hình thang ABCD cần dựng.

c) Chứng minh

Tứ giác ABCD là hình thang vì AB // CD.

Hình thang ABCD có AB = AD = 2cm, AC = BC = 4cm thỏa mãn yêu cầu đề bài

d) Biện luận: Ta luôn dựng được một hình thang thỏa mãn yêu cầu của đề bài.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
TN
Xem chi tiết
BS
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
PB
Xem chi tiết