Đồ thị hàm số y = x 3 - 3 x 2 + 2 a x + b có điểm cực tiểu A(2;-2). Khi đó a+b bằng
A. 4
B. 2
C. -4
D. -2
Đồ thị hàm số y = f(x) = x 3 + a x 2 + b x + c có hai điểm cực đại là A ( -2;16 ) và B ( 2;-16 ). Tính a + b + c
A. -12
B. 0
C. -6
D. -3
Đồ thị hàm số y = x 4 - 3 x 2 + a x + b có điểm cực tiểu A 2 ; - 2 . Tính tổng a + b
A. -14
B. -34
C. 20
D. 14
Cho hàm số y = f x = a x 3 + b x 2 + c x + d có đồ thị (C). Biết đồ thị hàm số (C) có hai điểm cực trị A(2;-27) ; B(-4;81). Tính S=-a+b-c+d
A. S = 24
B. S = 27
C. S = 31
D. S = 32
Cho hàm số y = f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tập tất cả các giá trị của m để đồ thị hàm số y = f x có 5 điểm cực trị là a b ; c với a, b, c là các số nguyên và a b là phân số tối giản. Tính a+b+c
A. 11
B. 8
C. 10
D. 5
Đồ thị hàm số y = a x 4 + b x 2 + c đạt cực đại tại A(0;-2) và cực tiểu tại B 1 2 ; - 17 8 . Tính a + b + c
A. a + b + c = 2
B. a + b + c = 0
C. a + b + c = -1
D. a + b + c = -3
Biết đồ thị hàm số y = a x 3 + b x 2 + c x + d có 2 điểm cực trị là − 1 ; 18 và 3 ; − 16 . . Tính tổng a + b + c + d .
A. 1.
B. 3.
C. 2.
D. 0.
Đường thẳng x = k cắt đồ thị hàm số y = log 5 x và đồ thị hàm số y = log 3 ( x + 4 ) . Khoảng cách giữa các giao điểm là 1/2. Biết k = a + b , trong đó a, b là các số nguyên. Khi đó tổng a + b bằng
A. 7
B. 6
C. 8
D. 5
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d (a;b;c;d ∈ R, a ≠ 0) có đồ thị (C). Biết rằng đồ thị (C) đi qua gốc tọa độ và có đồ thị hàm số y = f’(x) cho bởi hình vẽ sau đây.
Tính giá trị H = f(4) – f(2)
A. H = 51
B. H = 54
C. H = 58
D. H = 64