NT

Định giá trị của m để phương trình: \(x-\sqrt{1-x^2}=m\) có nghiệm duy nhất 

H24
23 tháng 9 2016 lúc 21:11

\(\Leftrightarrow\left(x-m\right)^2=1-x^2\)

\(\Leftrightarrow2x^2-2mx+m^2-1=0\)

có \(\Delta'=m^2-2\left(m^2-1\right)=2-m^2\)

phương trình có nghiệm duy nhất khi \(\Delta'=0\)<=> 2-m^2=0   <=> m \(\in\left\{\sqrt{2},-\sqrt{2}\right\}\)

vậy...

Bình luận (0)
H24
24 tháng 9 2016 lúc 20:25

Cha kho the nhi?

Bình luận (0)
CH
26 tháng 9 2016 lúc 10:59

ĐK: \(-1\le m\le1.\)

\(pt\Leftrightarrow x-m=\sqrt{1-x^2}\) (ĐK: \(x\ge m\))

\(\Rightarrow\left(x-m\right)^2=1-x^2\Rightarrow2x^2-2mx+m^2-1=0\)

Để pt có nghiệm duy nhất thì \(\Delta'=0\Leftrightarrow m^2-2\left(m^2-1\right)=0\Leftrightarrow m=\sqrt{2}\) hoặc \(m=-\sqrt{2}.\)

Với \(m=\sqrt{2};pt\Rightarrow2x^2-2\sqrt{2}x+1=0\Rightarrow x=\frac{1}{\sqrt{2}}>\sqrt{2}\) (Vô lý)

Với \(m=-\sqrt{2};pt\Rightarrow2x^2+2\sqrt{2}x+1=0\Rightarrow x=\frac{-1}{\sqrt{2}}>-\sqrt{2}\)

Vậy \(m=-\sqrt{2}\)

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
HN
Xem chi tiết
NL
Xem chi tiết
LM
Xem chi tiết
RZ
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
BN
Xem chi tiết
TL
Xem chi tiết