Cho hình chóp S.ABC đáy ABC là tam giác vuông tại C, có cạnh AB a = , cạnh bên SA vuông góc mặt phẳng đáy và SA a = 3 . Tính thể tích V khối cầu ngoại tiếp hình chóp.
A. V= 2 2 3 3 a .
B. V= 3 4a .
C. V= 32 3 3 πa .
D. V= 4 3 3 πa .
Mặt cầu ngoại tiếp hình chóp tứ giác đều có tất cả các cạnh bằng a có diện tích là:
A. S = 4 πa 2
B. S = 2 2 πa 2
C. S = 2 πa 2
D. S = 3 πa 2 2
Cho biết I = ∫ 0 π 4 sin x + 3 cos x sin x + cos x d x = πa + lnb (0<a<1; 1<b<3). Tích a.b bằng bao nhiêu?
Có ∫ 0 π 4 cos x sin x + cos x d x = π a + ln c b với a , b , c ∈ ℤ thì a 2 + b + c là:
A. 14
B. 66
C. 66 + 2
D. 70
Có ∫ 0 π 4 cos x sin x + cos x d x = π a + 1 b ln c với a , b , c ∈ ℤ thì a 2 + b + c là:
A. 14
B. 66
C. 66 + 2
D. 70
Hình chóp tứ giác đều có tất cả các cạnh bằng a. Tính bán kính R của mặt cầu ngoại tiếp hình chóp.
A. R = a
B. R = a 2
C. R = a 2 2
D. R = a 3 2
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Thể tích của khối cầu ngoại tiếp hình chóp đã cho bằng
Hình chóp đều S.ABCD tất cả các cạnh bằng a. Diện tích mặt cầu ngoại tiếp hình chóp là:
Cho hình chóp tứ giác đều có tất cả các cạnh bằng 2a. Bán kính mặt cầu ngoại tiếp hình chóp đã cho bằng