Điền dấu gì?
\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+.....+\frac{1}{90}\)so sánh với 2
e,\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{42}\right)\)
\(\Rightarrow A=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}=4-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)=4-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{1}-\frac{1}{7}\right)=4-\frac{6}{7}=3\frac{1}{7}\)
Thực hiện phép tính:
a)\(\frac{3}{4}\)x\(\frac{16}{9}\)-\(\frac{7}{5}\):\(\frac{-21}{20}\)
b)\(2\frac{1}{3}\)-\(\frac{1}{3}\)x [\(\frac{-3}{2}\)+(\(\frac{2}{3}\)+0,4x5) ]
c) (20+\(9\frac{1}{4}\)):\(2\frac{1}{4}\)
d) (6-\(2\frac{4}{5}\)x\(3\frac{1}{8}\)-\(1\frac{3}{5}\):\(\frac{1}{4}\)
GIÚP MIK VỚI AI NHANH MIK TICK LUÔN CHO.
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+..+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Có \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\) \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)....v........v............ \(\frac{1}{50^2}< \frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
Cộng lại \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}\)
\(\Rightarrow VT< \frac{1}{2^2}\left(2-\frac{1}{50}\right)=\frac{1}{2}-\frac{1}{2^2.50}< \frac{1}{2}\left(Đpcm\right)\)
Bai 1: Tinh
a) ( \(\frac{1}{3}\))-1 - (\(\frac{-6}{7}\))0 + ( \(\frac{1}{2}\))-2 . 2
b) \(\frac{2.5^{22}-9.5^{21}}{25^{10}}\): \(\frac{5.\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
c) ( \(\frac{-4}{9}\))3. (\(\frac{3}{2}\))2. (\(\frac{9}{6}\))3
a) \(x^3 + 1 = (x + 1)(x^2 - x + 1)\)
\(x^9 + x^7 - 3x^2 - 3 = x^7(x^2 + 1) - 3(x^2 + 1) = (x^2 + 1)(x^7 - 3)\).
Điều kiện của x để giá trị của biểu thức Q xác định là \(x \neq -1, x^7 \neq 3, x \neq -3, x \neq 4\).
b) \(Q = \left[\frac{x^7 -3}{x^3 + 1}.\frac{(x - 1)(x + 1)(x^2 - x + 1)}{(x^7 - 3)(x^2 + 1)} + 1 - \frac{2(x + 6)}{x^2 + 1}\right].\frac{(2x + 1)^2}{(x + 3)(4 - x)}\)
\(= \left[\frac{x^7 - 3}{x^3 + 1}.\frac{(x - 1)(x^3 + 1)}{(x^7 - 3)(x^2 + 1)} + 1 - \frac{2(x + 6)}{x^2 + 1}\right].\frac{(2x + 1)^2}{(x + 3)(4 - x)}\)
tính nhanh phân số:
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+......=\frac{1}{1+2+3+.....+50}\)
A = 20 + 21 + 22 + .....+ 270 - 271
B = 5 + 52 + 53 + .....+ 5100 - \(\frac{5}{4}\)101
\(C=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}\)
\(\frac{1}{3};\frac{1}{6};\frac{5}{2};\frac{3}{2}\) hãy xếp theo thứ tự thừ bé đến lớn