\(\Rightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow2x-6x-3=-5x\)
\(\Leftrightarrow-4x+5x=3\)
\(\Leftrightarrow x=3\)
\(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\\ \Leftrightarrow\dfrac{2x}{6}-\dfrac{3\left(2x+1\right)}{6}-\dfrac{x}{6}+\dfrac{6x}{6}=0\\ \Rightarrow2x-3\left(2x+1\right)-x+6x=0\\ \Leftrightarrow2x-6x-3-x+6x=0\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\)
<=> \(\dfrac{x.2}{3.2}-\dfrac{\left(2x+1\right).3}{2.3}=\dfrac{x}{6}-\dfrac{x.6}{6}\)
<=> \(\dfrac{2x}{6}-\dfrac{6x+3}{6}=\dfrac{x}{6}-\dfrac{6x}{6}\)
<=> \(2x-6x-3-x+6x=0\)
<=> \(x-3=0=>x=3\)
⇒2x−3(2x+1)=x−6x⇒2x−3(2x+1)=x−6x
⇔2x−6x−3=−5x⇔2x−6x−3=−5x
⇔−4x+5x=3⇔−4x+5x=3
⇔x=3
⇒2x−3(2x+1)=x−6x⇒2x−3(2x+1)=x−6x
⇔2x−6x−3=−5x⇔2x−6x−3=−5x
⇔−4x+5x=3⇔−4x+5x=3
⇔x=3