H24

\(\dfrac{bz-cy}{z}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\) (1) CMR: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) (*)

AH
10 tháng 9 2023 lúc 12:51

Lời giải:
Sửa đề: $z$ đầu tiên ở mẫu đổi thành $a$.

Ta có:

$\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}$

$=\frac{abz-cya}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}$

$=\frac{abz-cya+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0$

$\Rightarrow bz-cy=cx-az=ay-bx=0$

$\Rightarrow bz=cy; cx=az; ay=bx$

$\Rightarrow \frac{x}{a}=\frac{y}{b}=\frac{z}{c}$

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
Xem chi tiết
NB
Xem chi tiết
PH
Xem chi tiết
TD
Xem chi tiết
PH
Xem chi tiết