có: (a-b)2\(\ge\)0
=>\(a^2-2ab+b^2\ge0\)
=>\(a^2+b^2\ge2ab\)=> a2+b2+a2+b2\(\ge\)a2+b2+2ab
=>\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow\dfrac{2\left(a^2+b^2\right)}{4}\ge\dfrac{\left(a+b\right)^2}{4}\)
\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
Ta có:(a-b)2\(\ge\)0 với mọi a,b
=>a2-2ab+b2\(\ge\)0 với mọi a,b
=>a2+b2\(\ge\)2ab với mọi ab
=>2(a2+b2)\(\ge\)a2+2ab+b2
=>a2+b2\(\ge\)\(\dfrac{\left(a+b\right)^2}{2}\)
=>\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}=\left(\dfrac{a+b}{2}\right)^2\)(đpcm)